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ABSTRACT
Although beyond-accuracy metrics have gained attention in the
last decade, the accuracy of recommendations is still considered
the gold standard to evaluate Recommender Systems (RSs). This
approach prioritizes the accuracy of recommendations, neglecting
the quality of suggestions to enhance user needs, such as diversity
and novelty, as well as trustworthiness regulations in RSs for user
and provider fairness. As a result, single metrics determine the
success of RSs, but this approach fails to consider other criteria
simultaneously. A downside of this method is that the most accurate
model configuration may not excel in addressing the remaining
criteria. This study seeks to broaden RS evaluation by introducing a
multi-objective evaluation that considers all model configurations
simultaneously under several perspectives. To achieve this, several
hyper-parameter configurations of an RS model are trained, and the
Pareto-optimal ones are retrieved. The Quality Indicators (QI)
of Pareto frontiers, which are gaining interest in Multi-Objective
Optimization research, are adapted to RSs. QI enables evaluating
the model’s performance by considering various configurations
and giving the same importance to each metric. The experiments
show that this multi-objective evaluation overturns the ranking of
performance among RSs, paving the way to revisit the evaluation
approaches of the RecSys research community. We release codes
and datasets in the following GitHub repository: https://github.
com/sisinflab/RecMOE.

CCS CONCEPTS
• Information Systems→ Recommender systems; • Comput-
ing methodologies → Pareto Optimality.

KEYWORDS
Recommender Systems, Multi-Objective Evaluation, Pareto opti-
mality
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1 INTRODUCTION AND MOTIVATION
The success of Recommender Systems (RSs) is often measured by
its ability to accurately predict a user’s preferences and suggest
relevant items. However, other beyond-accuracy metrics have been
proposed to capture different aspects of recommendation quality,
such as diversity and novelty of suggestions [21, 23, 26], and fairness
issues [7, 16, 31].

While beyond-accuracy metrics have gained momentum in the
RecSys research community, accuracy of suggestions is still consis-
tently prioritized over the other facets of recommendation [4, 6].
The common practice is to select the best model solely based on the
accuracy metrics (e.g., nDCG, Recall, or Precision), which limits the
consideration of performance on beyond-accuracy metrics. Conse-
quently, the best model in terms of accuracy may not guarantee the
best performance in terms of diversity, novelty, or fairness, and vice
versa. This limitation in choosing the best models may result in a
lack of information on the actual behavior of RS models across mul-
tiple perspectives of recommendation. In this regard, we provide
a motivating example by training 32 hyper-parameter settings of
three baselines (i.e., EASE𝑅 [24], RP3𝛽 [19], and UserKNN [20]) on
the Goodreads dataset1. Figure 1 shows the min-max normalized
values of recommendation algorithm performance by selecting the
best hyper-parameter settings for each baseline. We do this based
on the best values of various metrics representing accuracy (nDCG),
novelty (EPC) [26], diversity (1 - Gini coefficient) [14], and algorith-
mic bias (APLT) [1] evaluation perspectives. When selecting the
model based on the highest value of a given metric, a larger shape
area on the resulting graph indicates reasonably high values of the
other metrics. As expected, we find that the selection strategy for
the best model tremendously impact the other metrics. Namely,
selecting the best hyper-parameter setting according to accuracy
guarantees the best value of novelty, but leads to sub-optimal value
of diversity and worse value of algorithmic bias, and vice versa.

1More details on the experimental settings will be provided in Section 3.
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Figure 1: Kiviat diagrams indicating the performance of the models on the Goodreads dataset. Themodels are selected according
to different metrics for each objective (i.e., Accuracy/Novelty, Diversity, and Bias). Higher means better.

Then, assessing a model’s performance for each metric, for exam-
ple after selecting it based solely on accuracy, results in a lack of
knowledge about the potential of the model on beyond-accuracy
metrics. Hence, the need of a multi-objective evaluation emerges to
simultaneously assess the models’ performance on several criteria,
even though the training of such models could still aim to maximize
the accuracy of recommendation (e.g., to choose the best iteration,
or trigger a stopping condition in the training phase).

To address this problem of multi-objective evaluation, we exploit
the definition of Pareto optimality from the Multi-Objective Opti-
mization (MOO) theory [18]. Given a set of objectives to maximize,
we define a specific hyper-parameter setting of a model as a Pareto-
optimal solution if there is no other setting that improves at least
one objective function without hurting another one. The set of such
Pareto-optimal configurations composes the so-called Pareto fron-
tier [28]. An approach to consider simultaneously more metrics in
the evaluation would be to select a solution from the Pareto frontier
through well-known methods (e.g., hypervolume [30]). However,
evaluating a specific configuration of a model only provides in-
formation on that particular setting and fails to provide insights
into the overall potential of the model. Therefore, to enhance the
multi-objective evaluation of RSs, we need to assess the entire set
of Pareto-optimal configurations of a model. Simply visualizing the
Pareto frontier only enables qualitative analysis, being challenging
when multiple objectives are involved. We propose to introduce
in RSs research the Quality Indicators , previously adopted in
the literature of MOO [15], which are designed to evaluate Pareto
frontiers by providing a real number to quantify and rank the perfor-
mance of a model corresponding to a Pareto frontier under different
perspectives. To the best of our knowledge, QIs have already been
exploited to evaluate Pareto frontiers — mostly their relative dom-
inance — generated by evolutionary algorithm [8, 10, 11] applied
in the context of Multi-Objective RSs [29, 30]. In contrast, we aim
to use them to offer insights into unexplored aspects of traditional
RSs. In detail, the contributions of our work are:

• We experimentally show the negative impact of prioritizing rec-
ommendation accuracy over other important metrics and mo-
tivate the need of a multi-objective evaluation of RSs models.
The results emphasize the importance of a more comprehensive
evaluation approach to ensure a thorough understanding of RS
behavior across multiple dimensions.

• We train 32 hyper-parameter settings of 5 state-of-the-art recom-
mendationmodels using 3 public datasets.We compute the Pareto

frontier in two multi-objective scenarios to provide a exhaustive
evaluation of the recommendation models.

• To enhance the multi-objective evaluation of RSs, we evaluate
various models under different scenarios simultaneously by uti-
lizing the Quality Indicators of Pareto frontiers to enable an
even more comprehensive analysis of RSs.

2 QUALITY INDICATORS
In this Section, we present the Quality Indicators (QIs) to assess
the Pareto frontiers corresponding to an RS model. They can be
classified according to the quality they assess.
Spread QI. The QIs for Spread indicate the range of the Pareto-
optimal solutions on the Pareto frontier. For our study, we use
the Maximum Spread (MS) [32]. Specifically, this spread indica-
tor measures the range of a Pareto frontier by considering the
maximum extent of each objective. Given the Pareto-optimal so-
lutions set 𝐴 and the number of objectives𝑚, MS is defined as
MS(𝐴) =

√︃∑𝑚
𝑗=1 max𝑎,𝑎′∈𝐴 (𝑎 𝑗 − 𝑎′𝑗 )2, where 𝑎 and 𝑎′ are solu-

tions belonging to 𝐴. The higher the value, the better the extensive-
ness of the curve.
Uniformity QI. The uniformity of a Pareto frontier provides in-
formation about the distribution of the solutions. A higher uni-
formity of the curve denotes that the solutions are less dispersed,
while a low uniformity indicates more diversity within the set.
In the case of RSs, having low uniformity leads to a wide range
of options for decision-makers. Specifically, we employ the Spac-
ing metric (SP) [22] that measures the variation in the Manhat-
tan distances between the Pareto-optimal solutions. Given the 𝑁
Pareto-optimal solutions 𝑎𝑖 ∈ 𝐴 and the number of objectives𝑚,

SP is defined as SP(𝐴) =

√︃
1

𝑁−1
∑𝑁
𝑖=1 (𝑑 − 𝑑1 (𝑎𝑖 , 𝐴/𝑎𝑖 ))2 with

𝑑1 (𝑎𝑖 , 𝐴/𝑎𝑖 ) = min𝑎∈𝐴/𝑎𝑖
∑𝑚
𝑗=1

��𝑎𝑖 𝑗 − 𝑎 𝑗 ��, where 𝑑 is the mean of
all the Manhattan distances 𝑑1 (𝑎1, 𝐴/𝑎1)), . . . , 𝑑1 (𝑎𝑁 , 𝐴/𝑎𝑁 )) and
𝑎𝑖 𝑗 represents the 𝑗-th objective of the solution 𝑎𝑖 . The lower the
value, the more concentrated the solutions are on the Pareto fron-
tier. However, an SP = 0 indicates that all the solutions could be
equidistant. The interpretation of SP is strictly related to MS.
Cardinality QI. Given 𝐾 generic solutions belonging to the set 𝐵,
the QIs for cardinality determine the proportion of Pareto-optimal
solutions in this set. Specifically, the Error Ratio (ER) [25] is de-
fined as ER(𝐵) =

∑
𝑏∈𝐵 𝑒 (𝑏 )
𝐾

with 𝑒 (𝑏) = 1 if 𝑏 is a Pareto-optimal
solution, 0 otherwise. A higher ER value indicates greater Pareto-
optimal solutions in the set 𝐵.
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Figure 2: Pareto optimal solutions plots for Amazon Music, Goodreads, and MovieLens1M. The first row refers to the
nDCG/Gini/EPC scenario, and the second row refers to the nDCG/APLT scenario. The arrows indicate the optimal direc-
tions.

All quality aspects QI. The QIs included in this category pro-
vide insights into the spread, uniformity, and cardinality of the
Pareto frontiers simultaneously. Among them, the Hypervolume
(HV) [33] is a volume-based QI that measures the volume of the
objective function space dominated by the Pareto frontier. Given
the Pareto-optimal solutions 𝑎 ∈ 𝐴 and a reference point 𝑟 , HV
is defined as HV(𝐴) = 𝜆(⋃𝑎∈𝐴{𝑥 | 𝑎 ≺ 𝑥 ≺ 𝑟 }), where 𝜆 denotes
the Lebesgue measure. The larger the hypervolume, the better the
solution set is.

3 EXPERIMENTS
Given a set of multiple metrics to assess simultaneously, we aim to
answer the following research questions: RQ1: To what extent can
the models provide Pareto-optimal configurations? Are these configu-
rations uniformly distributed, or are they dispersed enhancing diverse
solutions to the trade-off? RQ2: Which model has the Pareto frontier
that simultaneously offers better solutions on multiple metrics?

3.1 Experimental Setup
Datasets. We select three different datasets to cover several do-
mains. Specifically, we useAmazonMusic (music domain),Goodreads
[27] (book domain), andMovielens1M [12] (movie domain). Regard-
ing Goodreads (18892 users, 25475 items, 1378033 interactions, 0.99
sparsity) and Movielens1M (6040 users, 3706 items, 1000209 interac-
tions, 0.95 sparsity), we do not apply any pre-processing step, while
we obtain a pre-processed version of the Amazon Music dataset
from work by Anelli et al. [3] (14354 users, 10027 items, 145523
interactions, 0.99 sparsity).
Baselines and Hyper-parameters Settings Exploration. We
train five recommendation algorithms, i.e., EASE𝑅 [24], MultiVAE
[17], LightGCN [13], RP3𝛽 [19], and UserKNN [20]. Specifically,
we train 32 hyper-parameter values combinations of each model
by exploiting the Elliot framework [2]. We define the set of hyper-
parameters values for these baselines from previous works [4, 5].

We provide complete information on the explored values in the
GitHub repository. We set nDCG@10 as the optimization target.
MultiVAE and LightGCN are trained with a batch size of 256 and
300 epochs by applying the early stopping strategy with patience
of 10.
Metrics.We assess the baselines’ performance under several per-
spectives. We compute nDCG, Precision, and Recall for the accuracy
of recommendations. From the final user point of view, we evaluate
the diversity (with Gini index [14] and Item Coverage) and novelty
(with EPC and EFD [26]). Finally, we measure the popularity bias of
the recommendations with APLT [1] – the greater, the better – and
ARP [14] – the less, the better. All these metrics refer to cutoff 10.
Multi-Objective Evaluation Methodology.We clarify how we
obtain the Pareto frontiers corresponding to each baseline to eval-
uate them through the quality indicators described in Section 2.
Given the experimental setup described above, we can identify a
subset of the computed metrics to compose a multi-dimensional
objective function space. Each single hyper-parameters configura-
tion of a model represents a solution in this space since we have
computed their performance values regarding such metrics. As a
result, we obtain 32 points in the objective function space for each
baseline. Among these points, we can identify the Pareto-optimal
configurations, which lay on the Pareto frontier. Consequently,
given an objective function space designated by a set of metrics,
we gather five Pareto frontiers, each corresponding to one trained
baseline. Once the Pareto-optimal solutions composing the Pareto
frontiers are identified, we can exploit the QIs to evaluate the Pareto
frontiers of the models.

We carry out the multi-objective evaluation by identifying two
different evaluation scenarios. On the one hand, we focus on user-
centered objectives (accuracy, diversity, and novelty of recommen-
dations). This scenario leads to a three-dimensional space in which
the axes are nDCG, Gini index, and EPC. On the other hand, we
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Table 1: Classical analysis of the baselines’ results in terms of Accuracy, Diversity, Novelty, and Bias of recommendations.
The arrows indicates the descending or ascending order for the best solution. Best values are in bold. Second best values are
underlined.

Model nDCG↑ Recall↑ Precision↑ Gini↑ ItemCV↑ EPC↑ EFD↑ APLT↑ ARP↓

A
m
az
on

M
us

ic EASE𝑅 0.07560 0.09481 0.02049 0.25846 8891 0.02863 0.34370 0.08196 37.6760
UserKNN 0.07329 0.09424 0.02004 0.21426 8361 0.02741 0.32669 0.07363 42.7840
MultiVAE 0.04446 0.06264 0.01269 0.22379 6556 0.01606 0.19478 0.05773 28.4834
LightGCN 0.06433 0.08632 0.01797 0.33387 9121 0.02355 0.28666 0.12980 28.1607
RP3𝛽 0.04136 0.05070 0.01071 0.44327 8973 0.01521 0.20087 0.78420 4.46494

G
oo

dr
ea
ds

EASE𝑅 0.12685 0.08278 0.09680 0.04144 6842 0.10599 1.23522 0.00882 475.874
UserKNN 0.09842 0.06533 0.07416 0.02873 6434 0.08117 0.92929 0.01021 587.527
MultiVAE 0.07090 0.04812 0.05718 0.05126 7387 0.05974 0.69948 0.05533 443.142
LightGCN 0.06896 0.04835 0.05352 0.06434 7729 0.05722 0.68752 0.01176 356.040
RP3𝛽 0.06645 0.04177 0.05066 0.19076 14941 0.05759 0.78194 0.71016 64.3545

M
ov

ie
le
ns

1M

EASE𝑅 0.36075 0.15574 0.32462 0.06152 980 0.27472 3.22977 0.00260 1198.44
UserKNN 0.34603 0.14980 0.31189 0.04556 920 0.25320 3.01901 0.00462 1305.30
MultiVAE 0.32223 0.14189 0.29147 0.12550 1836 0.25631 3.00231 0.03657 1002.73
LightGCN 0.31087 0.13204 0.28113 0.09899 1481 0.24170 2.84602 0.02806 1046.17
RP3𝛽 0.28403 0.12287 0.27017 0.09266 1588 0.21789 2.58115 0.17851 961.877

compare the accuracy of recommendations against the algorith-
mic bias, by obtaining a two-dimensional objective function space
(nDCG vs. APLT). Figure 2 depicts the Pareto frontiers of the models
trained on each datasets for the two evaluation scenarios.

3.2 Results and Discussion
To commence the experimental assessment, we establish a bench-
mark for the upcoming investigation. In detail, a preliminary anal-
ysis of the baselines’ performance is conducted by reporting the re-
sults of the best configurations according to the values of nDCG@10
in Table 1. This analysis serves as context and motivates the subse-
quent exploration where QIs of the Pareto frontiers are utilized to
answer the research questions (Table 2).
A “traditional” analysis of recommendation performance.
The results in Table 1 corroborate the recent literature findings [3, 9].
For the three datasets, EASE𝑅 and UserKNN are the models pro-
viding the most accurate recommendations. Observing the novelty
metrics, the accuracy and novelty of recommendations exhibit a
positive correlation. However, we arrive at very different conclu-
sions by examining the other beyond-accuracy metrics. On the one
hand, concerning the diversity of recommendations, the remaining
models (LightGCN, MultiVAE, RP3𝛽) generally perform better than
EASE𝑅 and UserKNN across all datasets. On the other hand, RP3𝛽
consistently outperforms its competitors in addressing the popu-
larity bias. This peculiar performance puzzle does not offer insight
into the general behaviour of the model or whether other instances
of it follow a similar performance trend. To unravel this puzzle,
we shift to a multi-objective evaluation-based analysis aimed at
assessing the recommendation performance under several criteria
simultaneously.
Distribution of Pareto-optimal configurations. To answer RQ1,
we examine the values of Error Ratio (ER),Maximum Spread
(MS), and Spacing metric (SP). Different scenarios may arise
when examining the behaviour of a model. Firstly, when the model
yields higher ER,MS, and SP values, it suggests that the model’s
configurations are widely spread and varied, implying that it can
provide multiple solutions on the Pareto frontier. Secondly, sup-
pose the model exhibits higher ER andMS values but lower SP

values. In that case, it indicates that the model’s settings are dis-
persed but concentrated in certain areas of the objective function
space. This behaviour could result in fewer solutions on the Pareto
frontier. Thirdly, if the model has higher values of ER and lower
values of MS and SP, it implies that the model can offer various
Pareto-optimal settings, which are all concentrated in the same area
of the objective function space. Finally, a low number of Pareto-
optimal configurations can indicate some issues with the solutions’
characteristics, regardless of theMS and SP values.

Our investigation begins with the nDCG/APLT metrics for the
Movielens1M dataset (as shown in Table 2), with Figure 2f illustrat-
ing the results for a better understanding. Within this context, RP3𝛽
provides a broad range of acceptable solutions (ER=0.47) with a
wide dispersion (highest value ofMS), and the solutions are dis-
persed along the entire Pareto frontier (highest value ofSP). There-
fore, RP3𝛽 offers various solutions for an optimal trade-off between
recommendation accuracy and algorithmic bias. UserKNN exhibits
similar behaviour, with the second highest values for ER,MS, and
SP (0.5, 0.53, and 0.02, respectively). In contrast, EASE𝑅 offers a
limited choice, featuring a not extensive and highly concentrated
frontier (low values of MS and SP), despite having numerous
solutions on the frontier (highest value of ER). Finally, MultiVAE
and LightGCN present a limited number of Pareto-optimal config-
urations (lowest ER values), which influence the quality of their
Pareto frontiers regarding range and spacing. As illustrated in Fig-
ure 2f, QIs provide an adequate and quantitative depiction of the
models’ behaviour. We can then extend our scrutiny to the remain-
ing datasets. UserKNN, RP3𝛽 , LightGCN, and MultiVAE maintain
their respective performance across the Amazon Music (Figure 2d)
and Goodreads (Figure 2e) datasets. Upon examination of Table 2,
for these datasets, EASE𝑅 demonstrates higher MS values than
the one for Movielens1M. The corresponding Pareto frontiers are
broader (higher MS), but the solutions are concentrated into two
well-separated clusters (lower SP). This outcome emphasizes that
EASE𝑅 leaves the intermediate area between these clusters un-
covered, being incapable of offering a balanced optimal trade-off
between the two objectives. Let us focus on the user-centric sce-
nario, where our objectives include nDCG/Gini/EPC, as shown
in Figures 2a, 2b, and 2c. It is worth noting that UserKNN has
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Table 2: Quality Indicators of the Pareto frontiers results for the identified scenarios. The arrow indicates the descending or
ascending order for the best solution. SP has no specific order of solutions, since its interpretation is strictly connected with
the MS indicator. C counts how many solutions lay on the Pareto frontier.

Model

Objectives

Accuracy / Novelty / Diversity Accuracy / Bias

HV ↑ ER ↑ MS ↑ SP C ↑ HV ↑ ER ↑ MS ↑ SP C ↑
A
m
az
on

M
us

ic EASE𝑅 0.00095 0.46875 0.24986 0.01476 15 0.01355 0.43750 0.11886 0.00669 14
UserKNN 0.00082 0.34375 0.29452 0.00496 11 0.01448 0.34375 0.17871 0.00980 11
LightGCN 0.00051 0.06250 0.01335 0.00000 2 0.00835 0.03125 0.00000 0.00000 1
MultiVAE 0.00022 0.12500 0.09656 0.01738 4 0.00468 0.15625 0.05629 0.00351 5
RP3𝛽 0.00039 0.18750 0.20753 0.05888 6 0.03489 0.21875 0.11336 0.01173 7

G
oo

dr
ea
ds

EASE𝑅 0.00074 0.59375 0.09910 0.00227 19 0.00439 0.65625 0.09433 0.00214 21
UserKNN 0.00110 0.31250 0.19889 0.01287 10 0.02267 0.71875 0.48042 0.01471 23
LightGCN 0.00051 0.18750 0.06743 0.00783 6 0.00696 0.18750 0.09180 0.01536 6
MultiVAE 0.00043 0.06250 0.05022 0.00000 2 0.00521 0.06250 0.01827 0.00000 2
RP3𝛽 0.00083 0.12500 0.05584 0.01213 4 0.05544 0.28125 0.29529 0.02657 9

M
ov

ie
le
ns

1M

EASE𝑅 0.00865 0.68750 0.09833 0.00446 22 0.00281 0.65625 0.06001 0.00196 21
UserKNN 0.01296 0.28125 0.30929 0.03641 9 0.08191 0.50000 0.52723 0.01810 16
LightGCN 0.00807 0.18750 0.01012 0.00287 6 0.00974 0.15625 0.00617 0.00181 5
MultiVAE 0.01216 0.21875 0.03419 0.00427 7 0.01639 0.18750 0.02528 0.00293 6
RP3𝛽 0.00839 0.06250 0.03796 0.00000 2 0.14014 0.46875 0.86913 0.03228 15

proven its proficiency in generating several well-diversified hyper-
parameter configurations across all datasets. This model boasts the
best or second-best values of ER and MS, along with high SP
values, particularly for the Goodreads and Movielens1M datasets.
However, LightGCN and MultiVAE exhibit subpar performance
considering the number of Pareto-optimal configurations and their
distribution, while EASE𝑅 boasts a wide Pareto frontier but is con-
fined to specific regions, failing to cover the central (and more
balanced) area. In contrast, RP3𝛽 behaves differently from the pre-
vious scenario, providing fewer solutions on the Pareto frontier for
the accuracy/diversity/novelty trade-off.

In summary, in response to RQ1, we can assert that UserKNN pro-
vides several diversified optimal solutions that effectively balance the
two scenarios. Conversely, EASE𝑅 , while offering numerous optimal
solutions, tends to provide solutions that are concentrated and clus-
tered. RP3𝛽 is effective in balancing accuracy and bias but struggles
in disentangling user-centred metrics. Finally, it is worth noting that
LightGCN and MultiVAE yield inferior performance in this regard.

Performance on all quality metrics. In response to RQ2, we
can utilize the Hypervolume (HV) measure. HV evaluates the
performance of models from multiple objectives simultaneously, as
shown in Table 2. By considering the cardinality and dispersion of
the Pareto-optimal solutions and the dominance among the Pareto
frontiers,HV provides us with valuable insights. The higher the
volume or area under the frontier, the greater theHV . The results
show that UserKNN outperforms the other models by achieving
the best or second-best values ofHV for all datasets and scenar-
ios. This result indicates that UserKNN generates an extensive and
diversified Pareto frontier while performing well across all metrics.
While EASE𝑅 has the highest value of HV for the Amazon Mu-
sic dataset in the user-centred scenario, it does not dominate or
get dominated in the remaining cases. This result highlights the
model’s limited reliance on accounting for multiple metrics. Light-
GCN shows no distinctive trends, while MultiVAE’sHV decreases
when dealing with sparser datasets. RP3𝛽 confirms its capability
in managing the nDCG/APLT trade-off by achieving the highest

values of HV and visual dominance of its Pareto frontiers against
the others in Figures 2d, 2e, and 2f.

In summary, to answer RQ2, our findings indicate that in terms
of multi-objective evaluation, UserKNN is the superior model overall.
However, when considering the accuracy/bias trade-off, RP3𝛽 emerges
as a noteworthy contender.

Final observations. In evaluating recommendation systems, ac-
curacy is typically given top priority. Thus, in our initial analysis,
EASE𝑅 emerged as the frontrunner due to its impressive accu-
racy. However, when subjected to our multi-objective evaluation,
EASE𝑅 was often outperformed by other models. UserKNN, on
the other hand, demonstrated superior performance across diverse
metrics. Surprisingly, RP3𝛽 ranked the lowest in terms of accuracy
but proved to be particularly effective in finding a balance between
nDCG and APLT (bias) performance. These findings challenge the
traditional ranking of recommendation systems, paving the way
for new research in model evaluation.

4 CONCLUSION AND FUTUREWORK
In our study, we utilize Quality Indicators of Pareto frontiers to con-
duct a multi-objective evaluation of Recommender Systems (RSs).
Our experiments aim to assess RSs with three (Accuracy / Novelty
/ Diversity) and two (Accuracy / Bias) conflicting objectives. While
EASE𝑅 exhibits superior accuracy, our evaluation has unveiled a
new ranking of the baselines. UserKNN stands out as it provides sev-
eral diverse solutions which perform well in both multi-objective
scenarios. Additionally, RP3𝛽 proved to be highly effective in the
accuracy/algorithmic bias scenario. Moving forward, we plan to
extend this evaluation to other baselines. Furthermore, we intend
to leverage the Pareto frontiers’ quality indicators to evaluate the
impact of the models’ hyper-parameters in a multi-objective sce-
nario.
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